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MOTIVATION: WIDESPREAD VIDEO-BASED APPLICATIONS

Video organization Retail intelligence AR/VR

Public safety Home safety Robotic manipulation



SOME VIDEO UNDERSTANDING TASKS AND DATASETS

Segmentation Skeleton
Detection/
Tracking Classification Localization Language

YouTube-VOS COCO 
PoseTrack’17

VOT’18 Youtube 8M 
Kinetics 

Charades 
Something something

AVA 
Charades

ActivityNet Captions 
Charades-STA  

TALL

Key challenges:  

1) Understand the higher-level spatio-temporal concept in the overall video snippet 
2) Understand temporal motion of objects to reduce inaccuracies due to occlusion, 

background clutter, lighting conditions as objects



WHAT IS A VIDEO?

Sequence of frames representing 
temporal motion 

Each second represented by 
multiple frames (FPS) 

Each color pixel represented by 3 
channels (R, G, B) 

Fine-grained spatial relationship  

Short and long temporal 
relationships  

H X W x t

Example: Video from kinetics dataset  

10 seconds x 720p (1280x720) 

Raw space necessary: 

3 (Channels)x 8 bits per channel x 1280 
x 720 x 10 seconds * 15 FPS = 395 MB 

~ 5 MB (H.264)  
• High encoding cost but supported 

by most modern processors 
• But ML algorithms operate on raw 

frames (~395 MB every 10s)

After     compression

3D video tensor



ACTION RECOGNITION
• Action recognition (video classification) is the most well studied video understanding task  
• Most interesting videos (and complex motion) are based around human actions

What spatio-temporal features does the model need to learn?

Spatial 

Human pose 
Background 
Interacting object 

Temporal 

Objects in motion 
Motion tracking 
Odometry 

Others 
Audio 
Action length 
Specific combination of all of the above



PRE-DEEP LEARNING APPROACHES — SVM BASED

Recognizing Human Actions: A Local SVM Approach 
Schuldt et. al. (2004)



OPTICAL FLOW
Optical flow computes a 
motion field that gives: 

1. Motion field of overall 
scene 

2. Object tracking 
3. Visual odometry



PRE-DEEP LEARNING APPROACHES - DENSE TRAJECTORIES

Dense trajectories and motion boundary descriptors for action recognition, 
International Journal of Computer Vision, H Wang et. al. 2013 

Action recognition with improved trajectories, Wang et. al. ICCV 2013 



EX. VIDEO CLASSIFICATION TASK (UCF-11)

b_shooting v_spiking swinging dog walking tennis swing cycling

diving soccer juggling r_riding golf swing t_jumping

Detect human actions in video classification instead of objects in image classification



USING DEEP VISUAL FEATURES FROM 2D CNNs

INPUT
32x32

C1: 6 f. 
maps 
28x28

S2: 6 
f.maps 
14x14

C3: 16 f. 
maps 10x10

S4: 16 f. 
maps 5x5 

C5: 
layer 
120 O/P 10

F6: 
layer 
84

Convolutions Subsampling Convolutions Subsampling
Fully connected

Fully 
connected

Video frames CNN

Tennis 
forehand

224x224x3x1
101x1for f in frames:
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f.maps 
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Fully 
connected

Video frames CNN

Tennis 
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224x224x3x15
101x1

Pool/Concat intermediate 
features for all frames

67% on UCF-101 dataset



EX. VIDEO CLASSIFICATION TASK (UCF-11)

b_shooting v_spiking swinging dog walking tennis swing cycling

diving soccer juggling r_riding golf swing t_jumping

What is the problem here if we just use RGB features? Or even use RGB+flow features?



TWO STREAM NETWORKS: FUSING RGB AND FLOW SCORES

Two Stream Networks for 
Action Recognition in Videos. 

Simoyan et. al. NIPS 2014



USING 2D CNN FEATURES WITH LSTM

INPUT
32x32

C1: 6 f. 
maps 
28x28

S2: 6 
f.maps 
14x14

C3: 16 f. 
maps 10x10

S4: 16 f. 
maps 5x5 

C5: 
layer 
120 O/P 10

F6: 
layer 
84

Convolutions Subsampling Convolutions Subsampling
Fully connected

Fully 
connected

Video frames CNN

Tennis 
forehand

Sequence modelIntermediate Features

224x224x3x15
15x2048 101x1

Long-term recurrent CNNs for Visual Recognition and 
Description, Donahue et. al., CVPR  2015



3D CONVOLUTION NETWORKS
3D Convolution Neural Networks for 
Human Action Recognition, Ji et. al. 

ICML 2010

• Convolution in time and space domain (e.g. 5x5xT filters) 
• Huge increase in parameters (e.g. UCF-101 2D -> 3D, 5M -> 33M params), 

C3D is 39.5 GFlop (as compared to resnext 8GFlop) 
• Slowly learns time and space relationships through depth of the network  
• 2D -> pooling/concat instead bring the temporal information all at once

Learning station-temporal features 
with 3D convolutional networks. Tran 

et. al., 2015

VGG



USING CHANNELS FOR BETTER VISUAL FEATURES

Adaptive Feature Abstraction for Translating Video to Text. Pu, 
Martin Renqiang Min et. al., AAAI 2018

• Uses 3-D convolution (C3D) 
features from attended 
intermediate layers with LSTM 

• Used to solve the video 
captioning task, but the 
intermediate features can be 
used for any video 
understanding task 



ACTION RECOGNITION DATASETS



EARLY DATASETS: UCF-101 & HMDB-51

• UCF 101: 101 classes, 7 sec 
videos, 13K videos 

• Large and commonly used 
dataset until 2017 

• Youtube videos: variety of 
camera angles (first person, 
ego-centric, TV), 
illuminations, background, 
pose etc.



HMDB-51 and J-HMDB (21)

• HMDB 51: 51 classes, 4sec videos, 5K videos from movies 
• J-HMDB dataset (21 classes from HMDB relying w/ joint information)



SPORTS 1M

• YouTube videos: 1M 
• 487 classes 
• Fine-grained sports 

classes 
• Pre-training on sports 

1M and fine-tuning on 
UCF-101 generally 
improves performance



KINETICS

The Kinetics Human Action Video Dataset. Kay et. al. arXiv, 2017 

• 10s clips 
• Every clip is from a different 

YouTube video  
• For each action, huge variety 

in people, viewpoint, execution 

• Person Actions (Singular): e.g. waving, 
blinking, running, jumping 

• Person-Person Actions: e.g. hugging, 
kissing, shaking hands 

• Person-Object Actions: e.g. opening 
door, mowing lawn, washing dishes



KINETICS DATASET 

Can Spatiotemporal 3D CNNs Retrace the History of 
2D CNNs and ImageNet? Hara et. al., CVPR 2018 



AVA: ATOMIC VISUAL ACTIONS



SOMETHING SOMETHING DATASET



TOWARDS BETTER DATASETS FOR FINE-GRAINED UNDERSTANDING

Video classification datasets often suffer from visual bias (scene, 
objects) and difficulties in learning temporal relationships  (long 
and very short temporal relationships)  

E.g. 1) Eating watermelon involves a watermelon and with lack of 
other watermelon actions in the dataset, model infers “eating 
watermelon” when it sees a visually similar object to a watermelon 

2) Short actions like ‘slapping’ are very short, as compared to 
median length of other actions 

How do we design a dataset to include spatial and 
temporal understanding?



CATER DATASET

Atomic action recognition (13 classes) Compositional action recognition 
(301 classes)

Localization (36 classes, 6x6 grid)

• Synthetic video dataset built over 
CLEVR (Johnson et. al, 2017)  

CATER: A diagnostic dataset for 
compositional actions & temporal reasoning. 

Giridhar et. al., ICLR 2020



COIN DATASET
• 11, 827 videos, 180 tasks in 12 domains 
• Domains: nursing & caring, vehicles, leisure & 

performance, gadgets, electric appliances, 
household items, science & craft, plants & 
fruits, snacks & drinks dishes, sports, and 
housework 

• Tasks include: replace a bulb, install a ceiling 
fan (domain: electric appliance  

• Steps "remove the lampshade", "take out the 
old bulb", "install the new bulb" and "install 
the lampshade" are associated with the tasks 
"replace a bulb".

COIN: A Large-scale Dataset for 
Comprehensive Instructional Video Analysis, 

Tang et. al. arXiv 2019 



COIN DATASET
• 11, 827 videos, 180 tasks in 12 domains 
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• Steps "remove the lampshade", "take out the 
old bulb", "install the new bulb" and "install 
the lampshade" are associated with the tasks 
"replace a bulb".

COIN: A Large-scale Dataset for 
Comprehensive Instructional Video Analysis, 

Tang et. al. arXiv 2019 



PROGRESSION OF THE FIELD THROUGH DATASETS

Table from CATER, Giridhar et. al., ICLR 2020

• Datasets have generally grown larger 
(demands of the deep learning models 
being used)  

• Models have grown diverse from simple 
movies scenes to various view points, 
camera, lighting (mostly from youtube) 

• Addition of fine-grained spatial actions 
(Kinetics, Sports-1M); also attempt to 
capture complex temporal relationships 
(Sth-sth, CATER) 

• Many language grounded tasks beyond 
captioning 



LEARNING INTERACTIONS BETWEEN SPATIO-TEMPORAL SCENE OBJECTS

Motivation: Human actions involve complex interactions between the scene objects

Skiing Snowboarding

Skiing
Idea:  Train an object 
detector to extract 

regions and learn their 
interaction across spatial 

and temporal domain

How do we learn complex interactions between scene 
elements?



LEARNING PAIR-WISE INTERACTIONS CAN BE EXPENSIVE
• For each pair of objects, mean pool the vectors and train an MLP 

• Computation grows quickly with the number of projects 

• Adding more objects in a single vector drops accuracy quickly 

• Cannot learn higher-order interactions  

• Need to do this across frames

Skiing

=

For each pair of 
detected ROIs



USING SELF-ATTENTION TO SELECT SALIENT OBJECTS

Attend and Interact: Higher-Order Object Interactions 
for Video Understanding. Ma et. al. CVPR 2018. 



SINET LEARNS INTERACTION BETWEEN SCENE ELEMENTS (ROIs)
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Figure 3. Overview of the proposed SINet for action recognition. Coarse-grained: each video frame is encoded using fine-tuned ResNeXt-
101 into a feature vector vc,t. The sequence of vectors are then pooled via temporal SDP-Attention into single vector representation
vc. Fine-grained: for each object (ROI) in a video frame, the coordinates are used to pool a feature vector on,t from the same fine-
tuned ResNeXt-101. We dynamically select k groups of arbitrary objects with detected inter-object relationships via learnable attention
mechanism. This attentive selection module uses the overall image context representation vc,t, current set of (projected) objects Ot, and
previous object interactions voi,t�1 to generate k set of weights ↵k for k selections. The higher-order interaction between groups of
selected objects is then modeled via concatenation and the following LSTM cell. Finally, coarse-grained (image context) and fine-grained
(higher-order object interactions) information are combined to perform action prediction.
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Object interaction: In the simplest setting, an interac-
tion between objects in the scene can be represented as com-
bining individual object information. This combination can
be achieved via summation operation. For example, one
method is to add the learnable representations and project
these representations into a high-dimensional space where
the object interactions can be exploited by simply summing
up the object representations [37]. Another approach which
has been widely used with images is by pairing all possi-
ble object candidates (or subject-object pairs) [17, 8, 7, 56].
However, this is infeasible for video, since a video typi-
cally contains hundreds or thousands of frame and the set
of object-object pairs is too large to fully represent. Detect-
ing object relationships frame by frame is computationally
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expensive, and the temporal reasoning of object interactions
is not used.

Attentive selection for interaction: To overcome these
issues, we propose to dynamically select object candidates
which are important to discriminate the human actions. The
combination of these objects are then concatenated to fur-

4

SINET obtains a global video representation via the Scale Dot-Product Attention and a fine-grained 
representation (over objects) via recurrent higher-order interaction (HOI) module. The latter selects groups 
of objects with inter-relationships via an attention mechanism, and encodes the attended object features 

with LSTM. The coarse and fine-grained representations are concatenated for final prediction. 



Goal: Learn higher-order interactions 
between arbitrary (learnt) subgroups of 
objects 

• Introduce learnable parameters via MLP to 
address domain shift problem 

• Attentive selection with image context to 
co-attend with overall context 

• This is combined with all previous 
interactions to generate a probability 
distribution over all objects using self-
attention

LEARNING HIGHER-ORDER INTERACTIONS WITH SELF-ATTENTION
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Figure 3. Overview of the proposed SINet for action recognition. Coarse-grained: each video frame is encoded using fine-tuned ResNeXt-
101 into a feature vector vc,t. The sequence of vectors are then pooled via temporal SDP-Attention into single vector representation
vc. Fine-grained: for each object (ROI) in a video frame, the coordinates are used to pool a feature vector on,t from the same fine-
tuned ResNeXt-101. We dynamically select k groups of arbitrary objects with detected inter-object relationships via learnable attention
mechanism. This attentive selection module uses the overall image context representation vc,t, current set of (projected) objects Ot, and
previous object interactions voi,t�1 to generate k set of weights ↵k for k selections. The higher-order interaction between groups of
selected objects is then modeled via concatenation and the following LSTM cell. Finally, coarse-grained (image context) and fine-grained
(higher-order object interactions) information are combined to perform action prediction.
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Object interaction: In the simplest setting, an interac-
tion between objects in the scene can be represented as com-
bining individual object information. This combination can
be achieved via summation operation. For example, one
method is to add the learnable representations and project
these representations into a high-dimensional space where
the object interactions can be exploited by simply summing
up the object representations [37]. Another approach which
has been widely used with images is by pairing all possi-
ble object candidates (or subject-object pairs) [17, 8, 7, 56].
However, this is infeasible for video, since a video typi-
cally contains hundreds or thousands of frame and the set
of object-object pairs is too large to fully represent. Detect-
ing object relationships frame by frame is computationally
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expensive, and the temporal reasoning of object interactions
is not used.

Attentive selection for interaction: To overcome these
issues, we propose to dynamically select object candidates
which are important to discriminate the human actions. The
combination of these objects are then concatenated to fur-
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Attend and Interact: Higher-Order Object Interactions 
for Video Understanding. Ma et. al. CVPR 2018. 



QUALITATIVE RESULTS OF SINET

Attend and Interact: Higher-Order Object Interactions for Video Understanding

Chih-Yao Ma⇤1, Asim Kadav2, Iain Melvin2, Zsolt Kira3, Ghassan AlRegib1, and Hans Peter Graf2

1Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institution

Abstract

Human actions often involve complex interactions across

several inter-related objects in the scene. However, existing

approaches on fine-grained understanding of the scene of-

ten rely on single object representation or pairwise object

relationships. In this paper, we present SINet, which learns

the relationships between various objects across both space

and time. Different from previous work on visual relation-

ship detection which only model pairwise interactions be-

tween objects, we use efficient dot-product attention that

makes it possible to learn higher-order object interaction

over videos. We demonstrate how modeling the visual rela-

tionships can significantly improve accuracy for both action

recognition and video captioning. The proposed method

is validated on two large-scale datasets: Kinetics and Ac-

tivityNet Captions. We are able to achieve state-of-the-art

performances on both datasets, even though the videos are

only sampled at maximum 1 FPS. No motion information is

used. To our best knowledge, this is the first work model-

ing higher-order object interactions on open domain large-

scale video datasets.

1. Introduction
Video understanding tasks such as activity recognition

and caption generation are crucial for various applications
in surveillance, video retrieval, human behavior understand-
ing, etc. Recent approaches in video understanding, us-
ing combinations of ConvNets and Long Short Term Mem-
ory (LSTMs), have demonstrated significant improvements
over datasets such as UCF101 [43], HMDB51 [22], Sports-
1M [19], THUMOS [15], ActivityNet [5], and YouTube-
8M [1]. However, these datasets focus on sports related ac-
tions, e.g. playing tennis, basketball, swimming, etc. As a
result, recent work on action recognition mostly focus on
representing the overall visual scene as sequence of inputs
that are combined with temporal pooling, e.g. CRF, LSTM,

⇤work performed as a NEC Labs intern

Attended interactionsROIs with interrelationshipsVideo frame

Action prediction: cooking on campfire , cooking egg , …

Figure 1. Higher-order object interactions are progressively de-
tected based on selected lower-order interrelationships. ROIs with
the same color (weighted r, g, b) indicating there exist inter-
object relationships, e.g. eggs in the same bowl, hand breaks
egg, and bowl on top of campfire (interaction within the same
color). Groups of inter-relationships then jointly model higher-
order object interaction of the scene (interaction between different
colors). Bottom: ROIs are highlighted with their attention weights
for higher-order interactions. The model further reasons the inter-
actions through time and predicts cooking on campfire and cooking

egg. Images are generated from SINet (best viewed in color).

1D Convolution, attention, and NetVLAD [4, 28, 29, 39].
These approaches often ignore the fine-grained details of
the scene and do not infer interactions between various ob-
jects in the video. On the other hand, although prior ap-
proaches in video captioning tasks use spatial or temporal
attentions to selectively attend to fine-grained visual con-
tent in both space and time, they too do not model object
interactions.

Recently, datasets for video understanding such as Cha-
rades [40], Kinetics [20], and ActivityNet Captions [21]
contain diverse real-world examples and represent com-
plex human and object interactions that can be difficult
to model with state-of-the-art video understanding meth-
ods [40]. Consider the example in Figure 1, to accurately
predict cooking on campfire, cooking egg or even generating
a caption, the method requires understanding fine-grained
object relationships and interactions. For example, a hand
breaks an egg, eggs are in a bowl, the bowl is on top of
the campfire, campfire is a fire built with wood at a camp,

1



QUALITATIVE RESULTS CONTINUED..

Riding Brushing Play Polo Tie Up

Example: All images show a horse and a person. But actions are very different and difficult to 
distinguish for other methods



KINETICS EFFICIENCY OF SINET
Table 1. Prediction accuracy on the Kinetics validation set. All
of our results use only RGB videos sampled at 1 FPS. Maximum
number of objects per frame is set to be 30.

Method Top-1 Top-5
I3D2(25 FPS) [6] (test) 71.1 89.3

TSN (Inception-ResNet-v2) (2.5 FPS) [4, 52] 73.0 90.9
Ours (1 FPS)

Img feature + LSTM (baseline) 70.6 89.1
Img feature + temporal SDP-Attention 71.1 89.6

Obj feature (mean-pooling) 72.2 90.2
Img + obj feature (mean-pooling) 73.1 91.1

SINet (↵-attention) 73.9 91.5
SINet (dot-product attention) 74.2 91.7

ing training. When extracting image features, the smaller
edge of the image is scaled to 256 pixels and we crop the
center of the image as input to the fine-tuned ResNeXt-101.
Each image feature is a 2048-d feature vector.

Object feature: We generate the object features by first
obtaining the coordinates of ROIs from a Deformable R-
FCN [9] (pre-trained on MS-COCO) with ResNet-101 [16]
as backbone architecture. We set the IoU threshold for
NMS to be 0.2. Empirically, we found that it is important
to maintain a balance of image and object features, espe-
cially when image features were obtained from a network
which was fine-tuned on the target dataset. Thus, for each
of the ROIs, we extract features using coordinates and adap-
tive max-pooling from the same model (ResNeXt-101) that
was fine-tuned on Kinetics. The resulting object feature for
each ROI is a 2048-d feature vector. ROIs are ranked ac-
cording to their ROI scores. We select top 30 objects for
Kinetics and top 15 for ActivityNet Captions. Note that we
have a varied number of ROIs for each video frame, and
video length can also be different. We do not use the object
class information since we may miss some of the objects
that were not detected, due to the cross-domain problem.
For the same reason, the bounding-box regression process
is not performed here since we do not have the ground-truth
bounding boxes.

Training: We train SINet and SINet-Caption with
ADAM optimizer. The initial learning rate is set to 1e�5 for
Kinetics and 1e � 3 for ActivityNet Captions. Both learn-
ing rates automatically drop by 10x when validation loss is
saturated. The batch sizes are 64 and 32 respectively for
Kinetics and ActivityNet Captions.

5. Evaluation
5.1. Action recognition on Kinetics:

In this section, we conduct an ablation study of SINet on
Kinetics.

Does temporal SDP-Attention help? Several stud-
ies have pointed out that using temporal mean-pooling or

2Results obtained from https://github.com/deepmind/kinetics-i3d

Table 2. Comparison of pairwise (or triplet) object interaction
with the proposed higher-order object interaction with dot-product
attentive selection method on Kinetics. The maximum number of
objects is set to be 15. FLOP is calculated per video. For details
on calculating FLOP, please refer to Sec. 7.5.

Method Top-1 Top-5 FLOP (e9)
Obj (mean-pooling) 73.1 90.8 1.9

Obj pairs (mean-pooling) 73.4 90.8 18.3
Obj triplet (mean-pooling) 72.9 90.7 77.0

SINet (K = 1) 73.9 91.3 2.7
SINet (K = 2) 74.2 91.5 5.3
SINet (K = 3) 74.2 91.7 8.0

LSTMs may not be the best method to aggregate the se-
quence of image representations for videos [4, 30, 31]. To
overcome this issue, we use temporal SDP-Attention in-
stead of LSTM. As we can see from Table 1, using tempo-
ral SDP-Attention has proven to be superior to traditional
LSTM and already performs comparably with 3D ConvNet
that uses a much higher video sampling rate.

Does object interaction help? We first evaluate how
much higher-order object interactions can help in identify-
ing human actions. Considering mean-pooling over the ob-
ject features to be the simplest form of object interaction, we
show that mean-pooling over the object features per frame
and using LSTM for temporal reasoning has already outper-
formed single compact image representations, which is cur-
rently the trend for video classification methods. Directly
combining image features with temporal SDP-Attention
and object features over LSTM further reaches 73.1% top-
1 accuracy. This already outperforms the state-of-the-art
TSN [52] method using a deeper ConvNet with a higher
video sampling rate. Beyond using mean-pooling as the
simplest form of object interaction, our proposed method
to dynamically discover and model higher-order object in-
teractions further achieved 74.2% top-1 and 91.7% top-5
accuracy. The selection module with dot-product attention,
in which we exploit the inter-relationships between objects
within the same group, outperforms ↵-attention where the
inter-relationships are ignored.

Does attentive selection help? Prior work on visual
relationships and VQA concatenate pairwise object fea-
tures for detecting object relationships. In this experiment,
we compare the traditional way of creating object pairs or
triplets with our proposed attentive selection method. We
use temporal SDP-Attention for image features, and dot-
project attention for selecting object interactions. As shown
in Table 2, concatenating pairwise features marginally im-
proves over the simplest form of object interactions while
increasing the computational cost drastically. By further
concatenating three object features, the space for meaning-
ful object interactions becomes so sparse that it instead re-
duced the prediction accuracy, and the number of operations
(FLOP) further increases drastically. On the other hand, our

Overall efficiency  
I3D:  216 GFlops 

SINET: 69 (53+8+8) GFlops



USING TRANSFORMERS INSTEAD OF SINET-HOI

• Object features ->  Position encodings ->  Type encodings (object and frame) -> Transformer 
(higher-order learning) 

• Large increase in memory requirements 
• Performs comparably to SINET (0.1 % lower) 



MAKING ACTION RECOGNITION PRACTICAL

• Subsample videos : Sample videos at 1-5 FPS 

• Reduce computation along the temporal dimension: Most modern benchmarks heavily rely on 
spatial information 

• Use parallel operations : Transformers and convolution blocks can execute in parallel but the 
former have huge memory costs 

• On-device processing : Suppress dead-frames; Use motion or audio to trigger processing 

• Limit to RGB modality  :  Most Activity-Net contests are won using combination of optical-flow, 
audio, and skeletal modalities but recently RGB-only approaches have been competitive 



FUTURE 

• Compositional Methods: Understand 
videos in a compositional, spatio-
temporal format.

• Using keypoints beyond pose: We have 
lot of experience modeling key point 
modality. Can we use these tools to solve 
other problems beyond pose estimation?

• Self-supervised understanding: Finite 
labelled data in the world; How do we use 
video data to generate its own labels?

15 Keypoints is all you need. Snower et. al, CVPR 2020

CornerNet: Detecting Objects as Paired Keypoints. Law et. al. 
ECCV 2018

Shuffle and Learn: Mishra et. al. 2016

COIN: A Large-scale Dataset for Comprehensive 
Instructional Video Analysis, Tang et. al. arXiv 2019 

Compositionality in Computer Vision 
June 15th, Held in conjunction with CVPR 2020 in Seattle, US 



UNDERSTANDING ACTIONS FROM KEYPOINTS

2-D motion perception, Gunnar 
Johansson. 1971



EXAMPLE VIDEO UNDERSTANDING TASK: POSE TRACKING

15 Keypoints is all you need. Snower et. al, CVPR 2020



HOW TO SOLVE POSE TRACKING TASK?

Keypoint estimation Temporal Matching Assign IDs

• Optical Flow, GCN, 
Transformer (KeyTrack)

• Use temporal information 
to augment missed/poor 
quality detections

• Match to ID from one of 
previous N frames

• Learn temporal pose 
warping using transformer

15 Keypoints is all you need. 
Snower et. al, CVPR 2020



MEASURING POSE TRACKING ACCURACY

FN, False Negative FP, False Positive

IDSW, Track ID Switch



WORLD #1 IN POSE TRACKING LEADERBOARD (NOV’19 - APR’20)
PoseTrack 2018 ECCV Challenge Val Set

No. Method Extra Data APT AP FPS MOTA

1. KeyTrack (ours) 7 74.3 81.6 1.0 66.6
2. MIPAL [27] 7 74.6 - - 65.7
3. LightTrack (offline) [37] 7 71.2 77.3 E 64.9
4. LightTrack (online) [37] 7 72.4 77.2 0.7 64.6
5. Miracle [61] 3 - 80.9 E 64.0
6. OpenSVAI [38] 7 69.7 76.3 - 62.4
7. STAF [40] 3 70.4 - 3 60.9
8. MDPN [22] 3 71.7 75.0 E 50.6

PoseTrack 2017 Test Set Leaderboard
No. Method Extra Data APT FPS MOTA

1. KeyTrack (ours) 7 74.0 1.0 61.2
2. POINet [42] 7 72.5 - 58.4
3. LightTrack [37] 7 66.7 E 58.0
4. HRNet [47] 7 75.0 0.2 57.9
5. FlowTrack [57] 7 74.6 0.2 57.8
6. MIPAL [27] 7 68.8 - 54.5
7. STAF [1] 3 70.3 2 53.8
8. JointFlow [17] 7 63.6 0.2 53.1

Figure 5. Top scores on the PoseTrack leaderboards. E indicates an ensemble of detectors is used, and results in the method being offline.
A check indicates external training data is used beyond COCO and PoseTrack. A “-” indicates the information has not been made publicly
available. FPS calculations for JointFlow and FlowTrack are taken from [62]. HRNet FPS is approximated from FlowTrack since the
methods are very similar. The AP column has the best AP score. APT is the AP score after tracking post-processing.

Figure 6. Qualitative results of KeyTrack, on the PoseTrack 18 Validation Set (top row) and PoseTrack 17 Test Set (bottom row).

used to optimize MOTA, rather than AP.

Efficiency: Our tracking approach is efficient, not reliant
on optical flow or RGB data. When processing an image at
our optimal resolution, 24x18, we reduce the GFLOPS re-
quired by optical flow, which processes images at full size,
from 52.7 to 0.1. [37]’s GCN does not capture higher-order
interactions over keypoints and can be more efficient than
our network with local convolutions. However, this trans-
lates to a „1ms improvement in GPU runtime. In fact, with
other optimizations, our tracking pipeline has a faster end-
to-end runtime than [37] by 30%, shown in 4.4. We have
the fastest FPS of Top-down models. Bottom-up models
such as STAF, are more efficient but have poor accuracy.
Also, we do not rely on optical flow to improve bounding
box propagation as [57, 47] do, instead we use TOKS. This
contributes to our 5x FPS improvement over [57, 47].

5. Analysis
5.1. Tracking Pipeline

Varying Tokenization Schemes and Transformer
Hyper-parameters We examine the benefits of each em-
bedding. As evident in Table 3, Segment embeddings are
crucial because they enable the network to distinguish be-
tween the Poses being matched. Token embeddings give
the network information about the orientation of a pose and

Abs. Position Type Segment Rel. Position Match % Accuracy

3 3 7 7 72.6

3 7 3 7 90.0

3 3 3 7 93.2 (ours)
7 3 3 3 91.3

3 3 3 3 92.0

Table 3. Match accuracies for various embedding schemes.

help it interpret keypoints which are in close spatial prox-
imity; i.e. keypoints that have the same or similar position
embedding. We also train a model that uses the relative
keypoint distance from the Pose center rather than the ab-
solute distance of the keypoint in the entire image. We find
that match accuracy deteriorates with this embedding. This
is likely because many people perform the same activity,
such as running, in the PoseTrack dataset, leading to them
having nearly identical poses. We vary the number of trans-
former blocks, the hidden size in the transformer block, and
number of heads. Decreasing the number of transformer
blocks and hidden size hurts performance, while increasing
the number of heads too greatly hurts performance. Results
are in Table 7.

Number of Timesteps and Other Factors We find that
reducing the number of timesteps, adversely effects the
MOTA score. It drops up to 0.3 points with a single timestep



SELF-SUPERVISED METHODS FOR VIDEO UNDERSTANDING

• Track moving objects: Wang et. al. 2015 : Track 
patches with motion over a small temporal window 
=> Learns temporal motion of objects 

• Shuffle and Learn: Mishra et. al. 2016 : Validate 
frame order by shuffling frames => Learns 
temporal order of whole scene 

• Colorizing videos: Vonderick et. al. 2018 : Given two 
nearby frames, one in color and another in grey 
scale, the task is to copy colors from one frame to 
another nearby frame

Self-supervised approaches. Slides from Lecun, 2019

Example: Use these methods 
for generating disentangled 
representation for video 
generation

S3VAE: Self-Supervised Sequential VAE for 
Representation Disentanglement and Data 

Generation, CVPR 2020.



SUMMARY
• Video has numerous applications in modern applications such as AR/VR, 

retail etc. 

• Understanding video and generating a good representation is complex 
and computationally intensive 

• Numerous opportunities with new datasets, tasks and compute 
platforms



QUESTIONS


