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Public safety

MOTIVATION: WIDESPREAD VIDEO-BASED APPLICATIONS

Home safety

Robotic manipulation



SOME VIDEO UNDERSTANDING TASKS AND DATASETS

. Detection/ e L L.
Segmentation Skeleton , Classification Localization Language
Tracking _
Query: the person begins eating the sandwich \
YouTube-VOS COCO VOT'18 Youtube 8M AVA ActivityNet Captions
PoseTrack’17 Kinetics Charades Charades-STA
Charades TALL

Something something

Key challenges:

1) Understand the higher-level spatio-temporal concept in the overall video snippet
2) Understand temporal motion of objects to reduce inaccuracies due to occlusion,
background clutter, lighting conditions as objects



3D video tensor

Sequence of frames representing
temporal motion

Each second represented by
multiple frames (FPS)

Each color pixel represented by 3
channels (R, G, B)

Fine-grained spatial relationship

Short and long temporal
relationships

WHAT IS A VIDEO?

Example: Video from kinetics dataset
10 seconds x 720p (1280x720)
Raw space necessary:

3 (Channels)x 8 bits per channel x 1280
x 720 x 10 seconds * 15 FPS = 395 MB

After | | compression

~ 5 MB (H.264)
e High encoding cost but supported
by most modern processors

e But ML algorithms operate on raw
frames (~395 MB every 10s)



ACTION RECOGNITION

e Action recognition (video classification) is the most well studied video understanding task
* Most interesting videos (and complex motion) are based around human actions

What spatio-temporal features does the model need to learn?
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PRE-DEEP LEARNING APPROACHES — SVM BASED
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Recognizing Human Actions: A Local SVM Approach
Schuldt et. al. (2004)



OPTICAL FLOW

W

1.

2.
. Visual odometry

Optical flow computes a
motion field that gives:

Motion field of overall
scene
Object tracking



PRE-DEEP LEARNING APPROACHES - DENSE TRAJECTORIES
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Hornzontal motion boundaries

Vertical motion boundaries
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Hollywood2 UCFSports
Trajectory 47.8% 75.4%
HOG 41.2% 84.3%
HOF 50.3% 76.8%
MBH 55.1% 84.2%
Combined 58.2% 88.0%

Dense trajectories and motion boundary descriptors for action recognition,

International Journal of Computer Vision, H Wang et. al. 2013

Action recognition with improved trajectories, Wang et. al. ICCV 2013




EX. VIDEO CLASSIFICATION TASK (UCF-11)

b_shooting v_spiking swinging dog walking tennis swing cycling

soccer juggling r_riding golf swing t_jumping

Detect human actions in video classification instead of objects in image classification




USING DEEP VISUAL FEATURES FROM 2D CNNs

for £ in frames:
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EX. VIDEO CLASSIFICATION TASK (UCF-11)

b_shooting v_spiking swinging dog walking tennis swing cycling

I
‘
)|

diving soccer juggling r_riding golf swing t_jumping

What is the problem here if we just use RGB features? Or even use RGB+flow features?




TWO STREAM NETWORKS: FUSING RGB AND FLOW SCORES

Spatial stream ConvNet

conv2 || convd || conv4 || conv5 full?
5x5x256 || 332512 || 3:x3x512 | | 3x3x512 2048
stride 2 || stride 1 || strice 1 || stride 1 dropout
500l 22 Two Stream Networks for
2x2 \ class | Action Recognition in Videos.
00 Simoyan et. al. NIPS 2014
Temporal stream ConvNet sion

convi || conv2 || convd || conv4 fulié full?
TS5 || 55256 || 512 || AxS12 || Ax512 1] 4066 2048
stride 2 || stnde 1 || since 1 dropout || cropowut
pool 2x2
Spatial stream ConvNet 713.0% 40.5%
Temporal stream ConvNet 83.7% 54.6%
Two-stream model (fusion by averaging) 86.9% 58.0%
Two-stream model (fusion by SVM) 88.0% 59.4%




USING 2D CNN FEATURES WITH LSTM

15x2048

224x224x3x15

C5:

maps 5x5
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Convolutions Subsampling Convolutions Subsampling
connected

Fully connected

> ~susl Festures _ _ __ Seguence Lesming ___ _ Predictions
Single Input Type | Weighted Average D LsTM |l LsTM [ 1L o
Model RGB Flow 1/2,1/2  1/3,2/3 e o
Single frame | 67.37 7437 | 7546 7894  puian mmam il e
LRCN-fcg 68.20 77.28 80.90 82.34 e ~ | ©
TABLE 1 &

Activity recognition: Comparing single frame models to LRCN networks
for activity recognition on the UCF101 [25] dataset, with RGB and flow
inputs. Average values across all three splits are shown. LRCN
consistently and strongly outperforms a model based on predictions
from the underlying convolutional network architecture alone.
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Long-term recurrent CNINs for Visual Recognition and
Description, Donahue et. al., CVPR 2015

.....................



3D CONVOLUTION NETWORKS

3D Convolution Neural Networks for
Human Action Recognition, Ji et. al.
ICML 2010

V e

Learning station-temporal features
with 3D convolutional networks. Tran
et. al., 2015

e Convolution in time and space domain (e.g. 5x5xT filters)

e Huge increase in parameters (e.g. UCF-101 2D -> 3D, 5M -> 33M params),
C3D is 39.5 GFlop (as compared to resnext 8GFlop)

e Slowly learns time and space relationships through depth of the network

e 2D -> pooling/concat instead bring the temporal information all at once



USING CHANNELS FOR BETTER VISUAL FEATURES
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Figure 1: [llustration of our proposed caption-generation model. The model leverages a fully-connected map from the top layer
as well as comvolutional maps from dafferent mud-level layers of a pretrained 3D convolutional neural network (C3D). The
context vector 2, 1s generated from the previous hidden unit A,y and the convolutional maps {a;, .ar } (the red frame),
which s detailed 1in Figure 2.

Adaptive Feature Abstraction for Translating Video to Text. Pu,
Martin Rengiang Min et. al., AAAI 2018

Uses 3-D convolution (C3D)
features from attended
intermediate layers with LSTM

Used to solve the video
captioning task, but the
intermediate features can be
used for any video
understanding task



ACTION RECOGNITION DATASETS



EARLY DATASETS: UCF-101 & HMDB-51
E1ES0eY - el

e UCF 101: 101 classes, 7 sec
videos, 13K videos

e Large and commonly used
dataset until 2017

* Youtube videos: variety of
camera angles (first person,
ego-centric, TV),
illuminations, background,
pose etc.




HMDB-51 and J-HMDB (21)
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e HMIDB 51: 51 classes, 4sec videos, 5K videos from movies
e J-HMDB dataset (21 classes from HMDB relying w/ joint information)



SPORTS 1M

487 Sports-1M classes

YouTube videos: 1M
487 classes
Fine-grained sports
classes

Pre-training on sports
1M and fine-tuning on
UCF-101 generally
improves performance




KINETICS

®* 10s clips

e Every clip is from a different
YouTube video

Kinetics-600 2018 600-1000 * For each action, huge variety

in people, viewpoint, execution

Kinetics-400 2017 400-1000

More actions around similar objects

Popping balloons Inflating balloons

*Person Actions (Singular): e.g. waving,
blinking, running, jumping

* Person-Person Actions: e.g. hugging,
kissing, shaking hands Throwing water balloons

* Person-0bject Actions: e.g. opening b

door, mowing lawn, washing dishes

The Kinetics Human Action Video Dataset. Kay et. al. arXiv, 2017



KINETICS DATASET
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(a) UCKF-101 (split 1). (b) HMDB-S1 (splat 1). () ActivityNet. (d) Kinetics.
Figure 4: ResNet-18 training and validation losses. The validation losses on UCF-101, HMDB-51, and ActivityNet quickly converged 1o
high valuees and were clearly higher than their corresponding training losses. The validation losses on Kinetics were slightly higher than
the corresponding training losses, significantly different than those on the other datasets.

Dataset Year | Actions Clips Total | Videos

Can Spatiotemporal 3D CNNs Retrace the History of }:Jh(dj[g?;)sll [[\1 ;] ;8:; 1(5) : — :gi- 12;(2)8 ;g (1)(2)
2D CNNs and | Net? Hara et. al., CVPR 2018 T KN o ’ ’

s aricmagehiets Tiaia e%. @ ActivityNet-200 [3] | 2015 200 | avg 141 | 28,108 | 19,994

Kinetics 2017 400 | min 400 | 306,245 | 306,245




AVA: ATOMIC VISUAL ACTIONS

Dataset Explore Downlosd Challenge  About

Entities
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SOMETHING SOMETHING DATASET

20BN-SOMETHING-SOMETHING-DATASET

Total number of videos 220,847
Training Set 168,913
Validation Set 24777
Test Set (w/o labels) 27157

Labels 174

Putting something on a surface 4,081

Moving something up 3750
Covering something with something 3530
Pushing something from left to right 7447
Moving something down 3242
Pushing something from right to left 3195
Uncovering something 3,004

Taking one of many similar things on the 2969
table
Turning something upside down 2943

Tearing something into two pieces 2849

Putting something into something 2783




TOWARDS BETTER DATASETS FOR FINE-GRAINED UNDERSTANDING

Video classification datasets often suffer from visual bias (scene,
objects) and difficulties in learning temporal relationships (long
and very short temporal relationships)

E.g. 1) Eating watermelon involves a watermelon and with lack of
other watermelon actions in the dataset, model infers “eating
watermelon” when it sees a visually similar object to a watermelon

2) Short actions like ‘slapping’ are very short, as compared to
median length of other actions
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How do we design a dataset to include spatial and |2

temporal understanding?

Figure 4: List of 20 casiest and 20 hardest Kinetics classes
sorted by class accuracies obtained using the two-stream
mocdel,



CATER DATASET

e Synthetic video dataset built over
CLEVR (Johnson et. al, 2017)

CATER: A diagnostic dataset for
compositional actions & temporal reasoning.
Giridhar et. al., ICLR 2020

Atomic action recognition (13 classes) Compositional action recognition

(301 classes)

Localization (36 classes, 6x6 grid)



COIN DATASET

Electrical Appliances

Install a Ceiling Fan

. Step 4
Step 3
install the
install the new bulb lampshade
‘ the first level: domain ® the second level: task s the third level; step

e 11, 827 videos, 180 tasks in 12 domains

* Domains: nursing & caring, vehicles, leisure &
performance, gadgets, electric appliances,
household items, science & craft, plants &
fruits, snacks & drinks dishes, sports, and
housework

e Tasks include: replace a bulb, install a ceiling
fan (domain: electric appliance

e Steps remove the lampshade”, *take out the
old bulb”, *install the new bulb” and *install
the lampshade” are associated with the tasks
“replace a bulb”.

COIN: A Large-scale Dataset for
Comprehensive Instructional Video Analysis,
Tang et. al. arXiv 2019



COIN DATASET

* 11, 827 videos, 180 tasks in 12 domains
Task  Domains: nursing & caring, vehicles, leisure &

4" lrq '\ performance, gadgets, electric appliances,
v' | ‘ household items, science & craft, plants &
fruits, snacks & drinks dishes, sports, and
— 2 . — housework

Veroles Ohange Be Car Tre

v, 2 | ‘ » Tasks include: replace a bulb, install a ceiling
zl : - 4k _F fan (domain: electric appliance
‘ : “ ¥ % : e Steps “remove the lampshade”, *take out the
g ‘ old bulb”, *install the new bulb” and *install

Monsebcid tema Rapiace the Door Knob e | | | - the lampshade™ are associated with the tasks
“replace a bulb”.

Table 1. Comparisons of existing instructional video datasets.

Dataset  Duration  Samples  Segments Type of Task Video Source  Hierarchical Classes  Year
MPII [35) Oh 48m a4 5,609 cooking activities self-collected X 2012
YouCook [14] 2h.20m 8% . cooking activitics YouTube X 2013 CO'N: A Large_scale Dataset for
SOSalads [20] Sh.20m S0 066 cooking activitaes self-collected X - 2013
Hreakfas [ 28] TTh 1,989 5.456 COOKIng activitaes self-coliected X 10 214 - - - -
“S tasks™ [10] Sh 150 . compechensive tasks YouTube X 3 2016 ComprehenS“Ie InStrUCtlonaI Vldeo AnalyS|39
Ikea-FA [4]) 3h . SOm 101 1.911 assembling furnature self-collected X . 2017 o
YouCook2 [52] 176h 2,000 13,829 cooking activities YouTube X 8 2018 Ta ng et. al. arXiv 2019
EPIC-KITCHENS [13) SSh 432 39,596 cooking activities self-collected X - 2018
COIN (Ours) 4760, 38m 11,827 46,154 comprehensive tasks YouTube v 180



PROGRESSION OF THE FIELD THROUGH DATASETS

Datasets have generally grown larger
(demands of the deep learning models
being used)

Models have grown diverse from simple
movies scenes to various view points,
camera, lighting (mostly from youtube)
Addition of fine-grained spatial actions
(Kinetics, Sports-1M); also attempt to
capture complex temporal relationships
(Sth-sth, CATER)

Many language grounded tasks beyond
captioning

UCFI101 (
HMDBS] {
Kinctics {
AVA (

VLOGs (

DAHLIA (.

TACHS (

DeMo (
Charades (
Something Somethang (

Iiviegss (

Cooking (
IKEA (
Composate (
TFGIF-QA (
MovieQA |
Robot Pushang (
SVOA (
Moving MNIST ¢
Flash MNIST

Table from CATER, Giridhar et. al., ICLR 2020
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LEARNING INTERACTIONS BETWEEN SPATIO-TEMPORAL SCENE OBJECTS

Motivation: Human actions involve complex interactions between the scene objects

Skiing Snowboarding

How do we learn complex interactions between scene
elements?

Skiing




LEARNING PAIR-WISE INTERACTIONS CAN BE EXPENSIVE

* For each pair of objects, mean pool the vectors and train an MLP
- Computation grows quickly with the number of projects
- Adding more objects in a single vector drops accuracy quickly

- Cannot learn higher-order interactions

For each pair of
» Need to do this across frames detected ROIs




USING SELF-ATTENTION TO SELECT SALIENT OBJECTS

wo 'Higher-order interactions:
(i‘?ﬂ JUNE i‘ '* Interactions over groups of inter-related objects |
"""""""""""""""" '» Covers pair-wise or triplet object relationships as

llﬂ' . l . aspecial case ) :

Goal: + Higher-Order Interaction
Cmmm . Detea ‘nter,ob’ect E 040,
foloio) = Wy, (o, 1 o) relationships l l U U ' ' l '
= * Objects with significant |
Dot-product: - relationships are selected :
_ T co * Groups of selected object
foloi.0;) B(ro,)r¢(o, ) — relationships are , nier

1] Santoro, Adam, et al. "A simple neural network module for relational reasoning.” NIPS 2017.

Attend and Interact: Higher-Order Object Interactions
for Video Understanding. Ma et. al. CVPR 2018.



SINET LEARNS INTERACTION BETWEEN SCENE ELEMENTS (ROls)

Coarse-grained
Image context

SDP / 4
F?gqb Attention # v,

Fine-grained

Objects 0,
. / :
O¢ |
/—§ Recurrent
- HOI
O p(¥)

SINET obtains a global video representation via the Scale Dot-Product Attention and a fine-grained
representation (over objects) via recurrent higher-order interaction (HOI) module. The latter selects groups
of objects with inter-relationships via an attention mechanism, and encodes the attended object features
with LSTM. The coarse and fine-grained representations are concatenated for final prediction.




LEARNING HIGHER-ORDER INTERACTIONS WITH SELF-ATTENTION

\ | —

Attentive
Selection

\

Attentive
Selection

—

Image context V¢t

BN

\—

© MLP,

Attentive '
Selection «}-

' 9o,

— )

/ LSTM Cell

Goal: Learn higher-order interactions
between arbitrary (learnt) subgroups of
objects

1 * Introduce learnable parameters via MLP to
address domain shift problem

|« Attentive selection with image context to
co-attend with overall context

| » This is combined with all previous
interactions to generate a probability
distribution over all objects using self-
attention

Attend and Interact: Higher-Order Object Interactions
for Video Understanding. Ma et. al. CVPR 2018.



QUALITATIVE RESULTS OF SINET

Video frame ROls with interrelationships Attended interactions

Figure 1. Higher-order object interactions are progressively de-
tected based on selected lower-order interrelationships. ROIs with
the same color (weighted r, g, b) indicating there exist inter-
object relationships, e.g. eggs in the same bowl, hand breaks
egg, and bowl on top of campfire (interaction within the same
color). Groups of inter-relationships then jointly model higher-
order object interaction of the scene (interaction between different
colors). Bottom: ROIs are highlighted with their attention weights
for higher-order interactions. The model further reasons the inter-
actions through time and predicts cooking on campfire and cooking
egg. Images are generated from SINet (best viewed 1n color).



QUALITATIVE RESULTS CONTINUED..

Example: All images show a horse and a person. But actions are very different and difficult to

distinguish for other methods




KINETICS EFFICIENCY OF SINET

Table 2. Comparison of pairwise (or triplet) object interaction
with the proposed higher-order object interaction with dot-product
attentive selection method on Kinetics. The maximum number of
objects 1s set to be 15. FLOP 1s calculated per video. For details
on calculating FLOP, please refer to Sec. 7.5.

Method Top-1 Top-5 FLOP (e”)
Obj (mean-pooling) 73.1 90.8 1.9
Obj pairs (mean-pooling) 73.4 90.8 18.3
Obj triplet (mean-pooling)  72.9 90.7 77.0
SINet (K = 1) 73.9 91.3 2.7
SINet (K = 2) 74.2 91.5 5.3
SINet (K = 3) 74.2 91.7 3.0




USING TRANSFORMERS INSTEAD OF SINET-HOI

........................................

input Feature Tokens

Learned Position Embeddings

+
é& alimimnimnl 21212 EE EEEG
+

Learned Token Type Embeddings

% ol (2] ez 3 mEn e | |
Muiti head Attention ' l | l
Add & Norm - « 11

Transformer 2X v he PLY)

Encoder } Feed-Forward l \
Add & Norm

e Object features -> Position encodings -> Type encodings (object and frame) -> Transformer
(higher-order learning)

e Large increase in memory requirements

e Performs comparably to SINET (0.1 % lower)

Single
Sequence




MAKING ACTION RECOGNITION PRACTICAL

Subsample videos : Sample videos at 1-5 FPS

Reduce computation along the temporal dimension: Most modern benchmarks heavily rely on
spatial information

Use parallel operations : Transformers and convolution blocks can execute in parallel but the
former have huge memory costs

On-device processing : Suppress dead-frames; Use motion or audio to trigger processing

Limit to RGB modality : Most Activity-Net contests are won using combination of optical-flow,
audio, and skeletal modalities but recently RGB-only approaches have been competitive



Compositional Methods: Understand
videos in a compositional, spatio-
temporal format.

Using keypoints beyond pose: We have
lot of experience modeling key point
modality. Can we use these tools to solve
other problems beyond pose estimation?

Self-supervised understanding: Finite
labelled data in the world; How do we use
video data to generate its own labels?

FUTURE

COIN: A Large-scale Dataset for Comprehensive
Instructional Video Analysis, Tang et. al. arXiv 2019

Compositionality in Computer Vision
June 15th, Held in conjunction with CVPR 2020 in Seattle, US

CornerNet: Detecting Objects as Paired Keypoints. Law et. al.
ECCV 2018

15 Keypoints is all you need. Snower et. al, CVPR 2020

Shuffle and Learn: Mishra et. al. 2016



UNDERSTANDING ACTIONS FROM KEYPOINTS

2-D motion perception, Gunnar
Johansson. 1971




EXAMPLE VIDEO UNDERSTANDING TASK: POSE TRACKING

15 Keypoints is all you need. Snower et. al, CVPR 2020




HOW TO SOLVE POSE TRACKING TASK?

Temporal Matching _

TEE =  Optical Flow, GCN, e Match to ID from one of
& f& 1 -« Transformer (KeyTrack) previous N frames
'\ b b
- ‘LAS | D b e Use temporal information

e - Vg to augment missed/poor
quality detections

Concatenated Keypoints Position Position + Type Position + Type + Segment e Learn tem poral pose

15

/,@ 7 . ‘ e - ; warping using transformer
Matching & o)

Par
432

15 Keypoints is all you need.
Snower et. al, CVPR 2020
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MEASURING POSE TRACKING ACCURACY

We have a set of K keypoints which we wish to track for a video with 7
frames, s.t. t € T.

The MOTA* for each keypoint k € K is:

S, (FNF + FPF + IDSW})
> GTY

‘

Our final MOTA is the average of all MOT A*:

S MOT A"
K

IDSW, Track ID Switch



WORLD #1 IN POSE TRACKING LEADERBOARD (NOV’19 - APR’20)

PoseTrack 2018 ECCYV Challenge Val Set

PoseTrack 2017 Test Set LLeaderboard

No. Method ExtraData AP! AP FPS MOTA No. Method Extra Data AP? FPS MOTA
1. KeyTrack (ours) X 743 81.6 1.0 66.6 1. KeyTrack (ours) X 74.0 1.0 61.2
2. MIPAL [27] X 74.6 - - 65.7 2.  POINet [42] X 72.5 - 58.4
3. LightTrack (offline) [ X 712 713 E 64.9 3. LightTrack [37] X 66.7 E 58.0
4. LightTrack (online) [ X 724 772 0.7 64.6 4. HRNet [47] X 75.0 0.2 57.9
5. Miracle [61] v - 80.9 E 64.0 5. FlowTrack [57] X 74.6 0.2 57.8
6. OpenSVAI [38] X 69.7 76.3 - 62.4 6. MIPAL [27] X 68.8 - 54.5
7. STAF [40] v 70.4 - 3 60.9 7. STAF[]] v 70.3 2 53.8
8. MDPN [27] v 717 750 E 50.6 8. JointFlow [17] X 63.6 0.2 53.1

Pose Pairs d) Tokenized Pose Pairs @) Match ) Assign ID
4 r l’ ‘ . Scores -
1 ARl ARl Al ; y = ‘.Z: ; Transformer
“ra |2 - 1 Tokenizer _.,:. .§. R TR Mailching U503 04

y ' :: : Network
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SELF-SUPERVISED METHODS FOR VIDEO UNDERSTANDING

Track moving objects: Wang et. al. 2015 : Track
patches with motion over a small temporal window

» Predict any part of the input from any Lune —»
_ o o other part.
=> Learns temporal motion of objects > Predict the future from the past. 1
» Predict the from the recent past. ‘ Ll
Shuffle and Learn: Mishra et. al. 2016 : Validate .
» Predict the from the present. ' '
frame order by shuffling frames => Learns |
» Predict the from the bottom. 4
temporal order of whole scene . g - ’
» Predict the occluded from the visible 2
» Pretend there is a part of the input you «— Past Prasent Future —»
don’'t know and predict that. e Slide: LeCun

Colorizing videos: Vonderick et. al. 2018 : Given two

nearby frames, one in color and another in grey Self-supervised approaches. Slides from Lecun, 2019
scale, the task is to copy colors from one frame to

another nearby frame

Example: Use these methods
for generating disentangled

S3VAE: Self-Supervised Sequential VAE for
Representation Disentanglement and Data

representation for video ° 9 wor‘ > Generation, CVPR 2020.
generation -
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SUMMARY

e Video has numerous applications in modern applications such as AR/VR,
retail etc.

e Understanding video and generating a good representation is complex
and computationally intensive

 Numerous opportunities with new datasets, tasks and compute
platforms






